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Introduction

Motivations for Safe Motions
Initially for paraplegic patients.
Safe motion in term of constraint-

satisfying.
Accuracy during the movement is not 

needed.
Safe motion is more important than 

performance
The ZMP or CoP inequality constraint 

must be continuously satisfied.
Allows to reinforce the robustness of 

the controller. 
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Introduction

 We propose a method based on Interval Analysis 
guaranteeing the ZMP inequal i ty constraint 
continuously within the motion duration. 

 We will compare experimentally this method with a 
classical one.

 Kicking motion will be used for illustrating the issue of 
safe motion planning and re-planning.
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Introduction

A method for planning safe motions based on 
Interval Analysis:

  R.E Moore and F. Bierbaum, Methods and applications of Interval Analysis, Soc 
for Industrial & Applied Mathematics, 1979.

  H. Fang and J.P. Merlet, Dynamic interference avoidance of 2-DOF robot arms 
using interval analysis, IROS 2005.

  L. Jaulin, Path Planning using intervals and graphs, Reliable Computing, 2001.
  (Self-Collision avoidance for robot arms, Problem of finding collision-free paths) 

A new method for generating safe motion and 
databasing balanced movement:

S. Lengagne, N. Ramdani and P. Fraisse, A new method for generating safe 
motions for humanoid robots, IEEE Humanoid 2008. 

S. Lengagne, N. Ramdani and P. Fraisse, Safe Motion planning for databasing 
balanced movement of Humanoid Robots, IEEE ICRA 2009.

S. Lengagne, N. Ramdani and P. Fraisse, Planning and Fast Re-Planning of Safe 
Motions for Humanoid Robots: Application to a Kicking Motion, IEEE IROS 2009.
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Motion planning

Solving SIP
 To be solved, the SIP is transformed into a finite one:

 The continuous problem becomes a discrete one.
 Constraint violation.
 How can we ensure the constraint validity ?
 By replacing the time-grid by a time interval discretization.

∀i,∀tk ∈T    gi (X,tk ) ≤ 0
T = t0 = 0,t1,...,tN −1,tN = T{ }

ZMP(t)
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Motion planning

Solving SIP by using Interval Analysis:

 We decompose: 

 We compute:

 The interval discretization is done through Interval Analysis.

∀i,∀t∈ t0 ,tN[ ] gi (X,t) ≤ 0

t0 ,tN[ ]= t0 ,t1[ ]∪ ...∪ tN −1,tN[ ]

∀i,∀j∈ 1,...,N{ } max gi (X,τ )
∀τ ∈ t j−1,t j⎡⎣ ⎤⎦

Figure 2: Representation of ZMP(t)

The Guaranteed Discretization Library is available on:
http://www.lirmm.fr/~lengagne/GDL
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Experimentation on Humanoid Robot

Motions
 Parameters: 

 5 Coefficients for each dof, the vector X is composed of 61 
parameters.

 Cost Function: 
 Minimum time

 Equality constraints:
 12 equality constraints for defining the position and orientation of 

the flying foot at the beginning and at the end of the motion.
 Inequality constraints:

 76 continuous constraint functions:
 Each one is decomposed as: 

qi (t) = pi, j × Bj (t)
j=0

Ns

∑ X = T ,p1,..,p6[ ]

F(X) = dt
0

T

∫ = T

 

q ≤ q(t) ≤ q

q ≤ q(t) ≤ q

Γ ≤ Γ(t) ≤ Γ

ZMPs ≤ ZMPs ≤ ZMPs

ZMP f ≤ ZMPf ≤ ZMP f

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

y ≤ y(t) ≤ y ≡
y − y(t) ≤ 0

−y + y(t) ≤ 0

⎧
⎨
⎪

⎩⎪

Motion Planning method Classical Safe
Minimum time 8s 90s

Minimum energy 39s 168s
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Experimentation on Hoap3

Creating database to walk. 
 Hoap3 experimentations (l=7cm)
 We use three motions:

 Start motion (1 to 2)

 Cycle motion (3 to 2)

 End motion (3 to 1)
12 dof
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Optimal Kicking Motion

Kicking Motion
 V=0,6m/s x=1cm, h=3cm

It is possible to take into account other constraint functions
to avoid sliding or self-collision [19], for instance.

C. Time-Interval Discretization

In [7], we presented a new way for dealing with the
inequality constraints : the time-interval discretization, which
ensures constraint validity over whole motion duration and
allows to use state-of-the-art algorithm such as IPOPT [20].
This method uses Interval Analysis to ensure the inequality
constraints validity over whole motion duration, by comput-
ing minimum and maximum values for the set of functions
gi(t) when t is defined over a given interval [t].
Therefore the upper bound of gi(t): max gi are obtained

in an easy and practical way by computing the upper bound
of the inclusion function [gi] for a time interval [t] [21]. The
inequality constraints in (4) are replaced by:

∀i,∀[t] ∈ IT Sup[g]i(X, [t]) ≤ 0
with IT = {[0,t1], [t1,t2] . . . [tk,T ]}

(8)

In practice, the bounds thus derived may be too large
because of over approximation in interval computing pro-
cess. Still, there are several techniques that can be used to
obtain tighter enclosures by using for instance Taylor series
expansion or some global optimization techniques [22].

D. Optimal kicking motion

We planned an optimal motion to make the robot kick a
ball at the mid-duration of its motion at 0.6m/s speed. We
impose that the collision will be at the position x = 1cm,
h= 3cm as shown in Figure 3.

Fig. 3. Scheme of the collision between the ball and foot of the robot

The dimension of the parameter vector, which charac-
terizes the motion, X is 61 ( 5× 12 B-splines parameters
plus motion duration T ), and we consider the constraint
functions such as defined in Sections I-B.2, I-B.3. When
the optimization process was succeeded, we get the motion
presented in Figure 4 with the time history of the Zero
Moment Point in the frontal and sagital plane in Figures
5, 6. The computation time is about two hours.
Figures 4(b) show the collision between the foot and the

ball. The foot hits the ball at 3cm-high as required by the
optimization process.

(a) before collision (b) collision (c) after collision

Fig. 4. Optimal kicking motion with a ball far from 1cm

Fig. 5. Time history of the ZMP in the sagital plane

II. FAST MOTION RE-PLANNING
A. The Problem Under Study
In the previous section, we generated a kicking motion

while assuming the location of the ball at x = 1cm. What
happens if the ball is not at the expected position ? Figure 7
shows the result obtained when this optimal motion is used
with the ball at x = 3cm. The foot hits the ball higher than
expected. Thus the energy transmitted to the ball may be
insufficient to reach the desired goal.
To improve the kicking motion, one solution could be

to generate a new optimal motion with this new equality
constraint. However, this solution is too time-consuming
(about two hours for the previous one). In this sequel, we
introduce a method which modifies the previous optimal
kicking motion, in a very small CPU time while ensuring
constraint satisfaction.
Our idea consists in replacing the set of inequality con-

straint ∀t ∈ [0,T ], g(X ,t) < 0 by a set of bounds on the

Fig. 6. Time history of the ZMP in the frontal planeIt is possible to take into account other constraint functions
to avoid sliding or self-collision [19], for instance.

C. Time-Interval Discretization

In [7], we presented a new way for dealing with the
inequality constraints : the time-interval discretization, which
ensures constraint validity over whole motion duration and
allows to use state-of-the-art algorithm such as IPOPT [20].
This method uses Interval Analysis to ensure the inequality
constraints validity over whole motion duration, by comput-
ing minimum and maximum values for the set of functions
gi(t) when t is defined over a given interval [t].
Therefore the upper bound of gi(t): max gi are obtained

in an easy and practical way by computing the upper bound
of the inclusion function [gi] for a time interval [t] [21]. The
inequality constraints in (4) are replaced by:

∀i,∀[t] ∈ IT Sup[g]i(X, [t]) ≤ 0
with IT = {[0,t1], [t1,t2] . . . [tk,T ]}

(8)

In practice, the bounds thus derived may be too large
because of over approximation in interval computing pro-
cess. Still, there are several techniques that can be used to
obtain tighter enclosures by using for instance Taylor series
expansion or some global optimization techniques [22].

D. Optimal kicking motion

We planned an optimal motion to make the robot kick a
ball at the mid-duration of its motion at 0.6m/s speed. We
impose that the collision will be at the position x = 1cm,
h= 3cm as shown in Figure 3.

Fig. 3. Scheme of the collision between the ball and foot of the robot

The dimension of the parameter vector, which charac-
terizes the motion, X is 61 ( 5× 12 B-splines parameters
plus motion duration T ), and we consider the constraint
functions such as defined in Sections I-B.2, I-B.3. When
the optimization process was succeeded, we get the motion
presented in Figure 4 with the time history of the Zero
Moment Point in the frontal and sagital plane in Figures
5, 6. The computation time is about two hours.
Figures 4(b) show the collision between the foot and the

ball. The foot hits the ball at 3cm-high as required by the
optimization process.

(a) before collision (b) collision (c) after collision

Fig. 4. Optimal kicking motion with a ball far from 1cm

Fig. 5. Time history of the ZMP in the sagital plane

II. FAST MOTION RE-PLANNING
A. The Problem Under Study
In the previous section, we generated a kicking motion

while assuming the location of the ball at x = 1cm. What
happens if the ball is not at the expected position ? Figure 7
shows the result obtained when this optimal motion is used
with the ball at x = 3cm. The foot hits the ball higher than
expected. Thus the energy transmitted to the ball may be
insufficient to reach the desired goal.
To improve the kicking motion, one solution could be

to generate a new optimal motion with this new equality
constraint. However, this solution is too time-consuming
(about two hours for the previous one). In this sequel, we
introduce a method which modifies the previous optimal
kicking motion, in a very small CPU time while ensuring
constraint satisfaction.
Our idea consists in replacing the set of inequality con-

straint ∀t ∈ [0,T ], g(X ,t) < 0 by a set of bounds on the

Fig. 6. Time history of the ZMP in the frontal plane

It is possible to take into account other constraint functions
to avoid sliding or self-collision [19], for instance.

C. Time-Interval Discretization

In [7], we presented a new way for dealing with the
inequality constraints : the time-interval discretization, which
ensures constraint validity over whole motion duration and
allows to use state-of-the-art algorithm such as IPOPT [20].
This method uses Interval Analysis to ensure the inequality
constraints validity over whole motion duration, by comput-
ing minimum and maximum values for the set of functions
gi(t) when t is defined over a given interval [t].
Therefore the upper bound of gi(t): max gi are obtained

in an easy and practical way by computing the upper bound
of the inclusion function [gi] for a time interval [t] [21]. The
inequality constraints in (4) are replaced by:

∀i,∀[t] ∈ IT Sup[g]i(X, [t]) ≤ 0
with IT = {[0,t1], [t1,t2] . . . [tk,T ]}

(8)

In practice, the bounds thus derived may be too large
because of over approximation in interval computing pro-
cess. Still, there are several techniques that can be used to
obtain tighter enclosures by using for instance Taylor series
expansion or some global optimization techniques [22].

D. Optimal kicking motion

We planned an optimal motion to make the robot kick a
ball at the mid-duration of its motion at 0.6m/s speed. We
impose that the collision will be at the position x = 1cm,
h= 3cm as shown in Figure 3.

Fig. 3. Scheme of the collision between the ball and foot of the robot

The dimension of the parameter vector, which charac-
terizes the motion, X is 61 ( 5× 12 B-splines parameters
plus motion duration T ), and we consider the constraint
functions such as defined in Sections I-B.2, I-B.3. When
the optimization process was succeeded, we get the motion
presented in Figure 4 with the time history of the Zero
Moment Point in the frontal and sagital plane in Figures
5, 6. The computation time is about two hours.
Figures 4(b) show the collision between the foot and the

ball. The foot hits the ball at 3cm-high as required by the
optimization process.

(a) before collision (b) collision (c) after collision

Fig. 4. Optimal kicking motion with a ball far from 1cm

Fig. 5. Time history of the ZMP in the sagital plane

II. FAST MOTION RE-PLANNING
A. The Problem Under Study
In the previous section, we generated a kicking motion

while assuming the location of the ball at x = 1cm. What
happens if the ball is not at the expected position ? Figure 7
shows the result obtained when this optimal motion is used
with the ball at x = 3cm. The foot hits the ball higher than
expected. Thus the energy transmitted to the ball may be
insufficient to reach the desired goal.
To improve the kicking motion, one solution could be

to generate a new optimal motion with this new equality
constraint. However, this solution is too time-consuming
(about two hours for the previous one). In this sequel, we
introduce a method which modifies the previous optimal
kicking motion, in a very small CPU time while ensuring
constraint satisfaction.
Our idea consists in replacing the set of inequality con-

straint ∀t ∈ [0,T ], g(X ,t) < 0 by a set of bounds on the

Fig. 6. Time history of the ZMP in the frontal plane

It is possible to take into account other constraint functions
to avoid sliding or self-collision [19], for instance.

C. Time-Interval Discretization

In [7], we presented a new way for dealing with the
inequality constraints : the time-interval discretization, which
ensures constraint validity over whole motion duration and
allows to use state-of-the-art algorithm such as IPOPT [20].
This method uses Interval Analysis to ensure the inequality
constraints validity over whole motion duration, by comput-
ing minimum and maximum values for the set of functions
gi(t) when t is defined over a given interval [t].
Therefore the upper bound of gi(t): max gi are obtained

in an easy and practical way by computing the upper bound
of the inclusion function [gi] for a time interval [t] [21]. The
inequality constraints in (4) are replaced by:

∀i,∀[t] ∈ IT Sup[g]i(X, [t]) ≤ 0
with IT = {[0,t1], [t1,t2] . . . [tk,T ]}

(8)

In practice, the bounds thus derived may be too large
because of over approximation in interval computing pro-
cess. Still, there are several techniques that can be used to
obtain tighter enclosures by using for instance Taylor series
expansion or some global optimization techniques [22].

D. Optimal kicking motion

We planned an optimal motion to make the robot kick a
ball at the mid-duration of its motion at 0.6m/s speed. We
impose that the collision will be at the position x = 1cm,
h= 3cm as shown in Figure 3.

Fig. 3. Scheme of the collision between the ball and foot of the robot

The dimension of the parameter vector, which charac-
terizes the motion, X is 61 ( 5× 12 B-splines parameters
plus motion duration T ), and we consider the constraint
functions such as defined in Sections I-B.2, I-B.3. When
the optimization process was succeeded, we get the motion
presented in Figure 4 with the time history of the Zero
Moment Point in the frontal and sagital plane in Figures
5, 6. The computation time is about two hours.
Figures 4(b) show the collision between the foot and the

ball. The foot hits the ball at 3cm-high as required by the
optimization process.

(a) before collision (b) collision (c) after collision

Fig. 4. Optimal kicking motion with a ball far from 1cm

Fig. 5. Time history of the ZMP in the sagital plane

II. FAST MOTION RE-PLANNING
A. The Problem Under Study
In the previous section, we generated a kicking motion

while assuming the location of the ball at x = 1cm. What
happens if the ball is not at the expected position ? Figure 7
shows the result obtained when this optimal motion is used
with the ball at x = 3cm. The foot hits the ball higher than
expected. Thus the energy transmitted to the ball may be
insufficient to reach the desired goal.
To improve the kicking motion, one solution could be

to generate a new optimal motion with this new equality
constraint. However, this solution is too time-consuming
(about two hours for the previous one). In this sequel, we
introduce a method which modifies the previous optimal
kicking motion, in a very small CPU time while ensuring
constraint satisfaction.
Our idea consists in replacing the set of inequality con-

straint ∀t ∈ [0,T ], g(X ,t) < 0 by a set of bounds on the

Fig. 6. Time history of the ZMP in the frontal plane

Before collision Collision After collision

How to adapt the kicking motion?

 If x≠1cm?



(a) before collision (b) collision (c) after collision

Fig. 7. Optimal kicking motion with a ball far from 3cm

parameter X ∈ [X ], when [X ] is the feasible set of parameters.
This allows not to compute the inequality constraints which
can be nonlinear and time-consuming, whereas constraints
on the parameter are linear and fast to compute.
By this way, online adaptation consists in an optimization

process with only bounds on the parameters, the new equality
constraints h′k and possibly the cost function J′.

minimizes J′(X̂ ,t)
subject to X̂ ∈ [X ]
and ∀k h′k(X̂) = 0

(9)

B. Computation of the Feasible Sub-set
To make the robot able to adapt its motion to as many

situations as possible we have to compute a feasible sub-set
[X ] that contains the optimal vector X̃ and satisfy all the
inequality constraint functions. Recent studies addressed the
computation of feasible sets, using Interval Analysis, for the
design of parallel or serial robots [23], [24]. In fact, we do not
compute whole feasible set, but only an inner approximation
of it. The sub-set [X ] will be contained in the feasible set. We
define a box as large as possible, then we solve the following
problem:

maximize ! ∈ R+

such as ∀i [Xi] = X̃i+ ! × [Wi]
with ∀i 0 ∈ [Wi]

∀ j, ∀X ∈ [X ], ∀t ∈ [0,T ] g j(X ,t) < 0

(10)

Where ! is the normalized width of the box and [W] a
weighted interval vector that allows to ignore or give priority
to some components of the box [X ]. In this case, we propose
that [W] is computing by using the distance between the
optimal vector X̃ and the first constraint violation along each
direction.
As presented in Section I-C, we propose to use the time-

interval discretization which ensures constraint validity over
whole motion duration. The inequality constraint in Equation
(10) is replaced by:

∀i,∀[t] ∈ IT Sup[g]i(X, [t]) ≤ 0
with IT= {[0,t1], [t1,t2] . . . [tk,T ]}

(11)

C. Algorithm
The principle of the algorithm is to start from a large value

of ! , and to reduce it by rejecting all the solutions in the
corresponding box which violate a constraint.
Figure 8 shows the principle of this algorithm computing

the feasible sub-set [X ]. Using ALIAS software [25], a

Fig. 8. Example of a feasible set and of its inner approximation : the
feasible sub-set [X ]

branching algorithm with consistence tests, we search a box
[z] that satisfies:

with [X ] = X̃+ !k[W]
find [z] ⊂ [X ]

such as ∃ j,∃t ∈ [t] Sup[g] j([z],t) > 0
(12)

Once the software finds a solution, [z], it stops and ! is
chosen such that:

[z] ∩ X̃+ !k+1[W] = /0 (13)

The algorithm stops when there is no solution to the
problem (12). Eventually, computed X̃ + ! f inal[W] is the
largest box contained in the feasible set.

III. KICKING-MOTION ADAPTATION
A. Choice of the parameter to adapt
Obviously, it is not necessary to adapt all the motion

parameters. Since, we are interesting in the collision location
along the x-axis, we propose to adapt the trajectories of the
knee, hip pitch and ankle pitch ( named LEG JOINT[3,4,5]
in Figure 2) which influence the motion in the sagital plane.
The collision occurs at the half of the motion, thus we will
only change the third B-splines parameters.

B. Feasible Sub-Set
Table I presents the result of our computation. Where the

optimal value is X̃i, the lower bound of the feasible set Xi
and the upper bound of the feasible set Xi. The width of the
feasible sub-set depends on the parameter, but it is interesting
to see that some parameters can be changed within an interval
of 5 degrees without making the robot falls ( since it ensures
no constraint violation).
Figures 9 shows the time history of a joint value and the

ZMP in the sagital plane for the optimal motion and their
limits for all the motions contained in the feasible sub-set.
In Figure 9(b), the ZMP in the sagital plane is presented,

JNRH 2010, Poitiers, 3-4 JuinS. Lengagne, N. Ramdani, P. Fraisse

Fast Re-Planning

Computation of the feasible subset
 Satisfying all the inequality constraints
 Inner approximation of it
 We define a box as large as possible

position X̃i X i Xi
Right Hip Pitch -22.60 -26.58 -20.34
Right Knee 39.68 38.20 41.21

Right Ankle Pitch -17.33 -18.88 -16.05
Left Hip Pitch -17.12 -19.13 -13.97
Left Knee 19.56 13.97 22.90

Left Ankle Pitch 4.51 -3.66 5.90

TABLE I
TABLE OF THE VALUE FOR THE OPTIMAL MOTION, FOR THE FEASIBLE

SUB-SET (ANGLE ARE GIVEN IN DEGREE)

all the motions of the feasible sub-set will make the robot
keeping its balance, since their limits stay within the size of
the foot (−0.04 < ZMPs(t) < 0.068). Thus, we can choose
any motion of the feasible sub-set without computing the
inequality constraint functions to make sure that there is no
constraint violation. All the motions of the feasible sub-set
are safe.

C. Re-planned motion

position X̃i X̂i
Right Hip Pitch -22.60 -21.90
Right Knee 39.68 40.17

Right Ankle Pitch -17.33 -18.82
Left Hip Pitch -17.12 -18.12
Left Knee 19.56 19.21

Left Ankle Pitch 4.51 5.34

TABLE II
TABLE OF THE VALUE FOR THE OPTIMAL MOTION AND FOR THE

RE-PLANNED MOTION (ANGLE ARE GIVEN IN DEGREE)

Figure 11 shows the feasible set of the couple (x,h) for
all the motions in the feasible sub-set [X ]. Unfortunately,
it appears that we cannot achieve a kicking motion for the
collision location (x= 3cm,h= 3cm). If we want the robot
kicks the ball at 3cm high, the ball must be located between
−1cm and 1.7cm. We choose to re-plan the optimal motion
to make the robot kicks a ball at 3cm high and located at
the position x= 1.5cm. Thus, we proceed to the optimization
of the problem presented in Equation(9) with these equality
constraints:

find X̂ ∈ [X ]
such as h(T2 ) = 3cm

x(T2 ) = 1.5cm
(14)

The optimization software spent less than one second of CPU
time to find a solution. This solution is presented in Table II
and the re-planned motion in Figure 12.

(a) before collision (b) collision (c) after collision

Fig. 12. Re-planned kicking motion

(a) Right Hip Pitch angle value

(b) ZMP in the sagital plane : zmp s(t)

Fig. 9. Time History of the Right Hip Pitch angle and of the ZMP in the
sagital plane for the optimal motion, for the re-planned motion, and their
limits for all the solutions in the feasible sub-set

CONCLUSION

In this paper we presented the planning and fast re-
planning of safe motions. We applied our method to a
kicking motion for a humanoid robot. The safe motion
planning consists in solving a Semi Infinite Programming
problem, using a time-interval discretization. Unfortunately,
this method requires a large CPU time (2 hours), and hence
cannot be done online. We generate a safe kicking motion
which makes the HOAP-3 Humanoid Robot kick a ball
located at 1cm from its foot. We showed that this motion
is not good enough, if the ball is farther than expected. As a
result we propose a safe re-planning method, which starting
from the optimal motion, computes off-line a feasible sub-
set of the motion parameters. By the way, we can achieve
a fast re-planning which consists in finding, in this feasible
sub-set, a solution that will validate a new set of equality
constraint. In the future we will test this method for other
motions, for example to adapt optimal step motions to a new
position or to slopes.

Re-Planning for h=3cm and x=1,5cm

Tc < 1 second
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Fast Re-Planning
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limits for all the solutions in the feasible sub-set

CONCLUSION

In this paper we presented the planning and fast re-
planning of safe motions. We applied our method to a
kicking motion for a humanoid robot. The safe motion
planning consists in solving a Semi Infinite Programming
problem, using a time-interval discretization. Unfortunately,
this method requires a large CPU time (2 hours), and hence
cannot be done online. We generate a safe kicking motion
which makes the HOAP-3 Humanoid Robot kick a ball
located at 1cm from its foot. We showed that this motion
is not good enough, if the ball is farther than expected. As a
result we propose a safe re-planning method, which starting
from the optimal motion, computes off-line a feasible sub-
set of the motion parameters. By the way, we can achieve
a fast re-planning which consists in finding, in this feasible
sub-set, a solution that will validate a new set of equality
constraint. In the future we will test this method for other
motions, for example to adapt optimal step motions to a new
position or to slopes.

position X̃i X i Xi
Right Hip Pitch -22.60 -26.58 -20.34
Right Knee 39.68 38.20 41.21

Right Ankle Pitch -17.33 -18.88 -16.05
Left Hip Pitch -17.12 -19.13 -13.97
Left Knee 19.56 13.97 22.90

Left Ankle Pitch 4.51 -3.66 5.90

TABLE I
TABLE OF THE VALUE FOR THE OPTIMAL MOTION, FOR THE FEASIBLE

SUB-SET (ANGLE ARE GIVEN IN DEGREE)

all the motions of the feasible sub-set will make the robot
keeping its balance, since their limits stay within the size of
the foot (−0.04 < ZMPs(t) < 0.068). Thus, we can choose
any motion of the feasible sub-set without computing the
inequality constraint functions to make sure that there is no
constraint violation. All the motions of the feasible sub-set
are safe.

C. Re-planned motion

position X̃i X̂i
Right Hip Pitch -22.60 -21.90
Right Knee 39.68 40.17

Right Ankle Pitch -17.33 -18.82
Left Hip Pitch -17.12 -18.12
Left Knee 19.56 19.21

Left Ankle Pitch 4.51 5.34

TABLE II
TABLE OF THE VALUE FOR THE OPTIMAL MOTION AND FOR THE

RE-PLANNED MOTION (ANGLE ARE GIVEN IN DEGREE)

Figure 11 shows the feasible set of the couple (x,h) for
all the motions in the feasible sub-set [X ]. Unfortunately,
it appears that we cannot achieve a kicking motion for the
collision location (x= 3cm,h= 3cm). If we want the robot
kicks the ball at 3cm high, the ball must be located between
−1cm and 1.7cm. We choose to re-plan the optimal motion
to make the robot kicks a ball at 3cm high and located at
the position x= 1.5cm. Thus, we proceed to the optimization
of the problem presented in Equation(9) with these equality
constraints:

find X̂ ∈ [X ]
such as h(T2 ) = 3cm

x(T2 ) = 1.5cm
(14)

The optimization software spent less than one second of CPU
time to find a solution. This solution is presented in Table II
and the re-planned motion in Figure 12.

(a) before collision (b) collision (c) after collision

Fig. 12. Re-planned kicking motion

(a) Right Hip Pitch angle value

(b) ZMP in the sagital plane : zmp s(t)

Fig. 9. Time History of the Right Hip Pitch angle and of the ZMP in the
sagital plane for the optimal motion, for the re-planned motion, and their
limits for all the solutions in the feasible sub-set

CONCLUSION

In this paper we presented the planning and fast re-
planning of safe motions. We applied our method to a
kicking motion for a humanoid robot. The safe motion
planning consists in solving a Semi Infinite Programming
problem, using a time-interval discretization. Unfortunately,
this method requires a large CPU time (2 hours), and hence
cannot be done online. We generate a safe kicking motion
which makes the HOAP-3 Humanoid Robot kick a ball
located at 1cm from its foot. We showed that this motion
is not good enough, if the ball is farther than expected. As a
result we propose a safe re-planning method, which starting
from the optimal motion, computes off-line a feasible sub-
set of the motion parameters. By the way, we can achieve
a fast re-planning which consists in finding, in this feasible
sub-set, a solution that will validate a new set of equality
constraint. In the future we will test this method for other
motions, for example to adapt optimal step motions to a new
position or to slopes.
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Conclusion and ongoing work

Time-grid discretization can lead to any constraint 
violation.

 It improves the balance during the movement. 
Motion re-planning for adapting movement to 

unexpected events (ex: kicking motion )
This method has been experimentally validated. 

Useful for specific movements.
 Embedded applications on small humanoid robot 

should benefit of this approach.
 The next objective will be to study the aspects of safe 

motion planning for multi-contact. 


